
#edspaces

Lessons Learned: EPIC CARBON NEUTRALITY STUDY

For Clemson University's New Forestry Building

November 8, 2023 @ 8am

SPEAKERS

Suzanne McDade Managing Principal Moseley Architects

Bryna Dunn Director of Sustainability Moseley Architects

Tony Putnam Facilities Director Clemson University

FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

AGENDA

PROJECT BACKGROUND

ABOUT EPIC

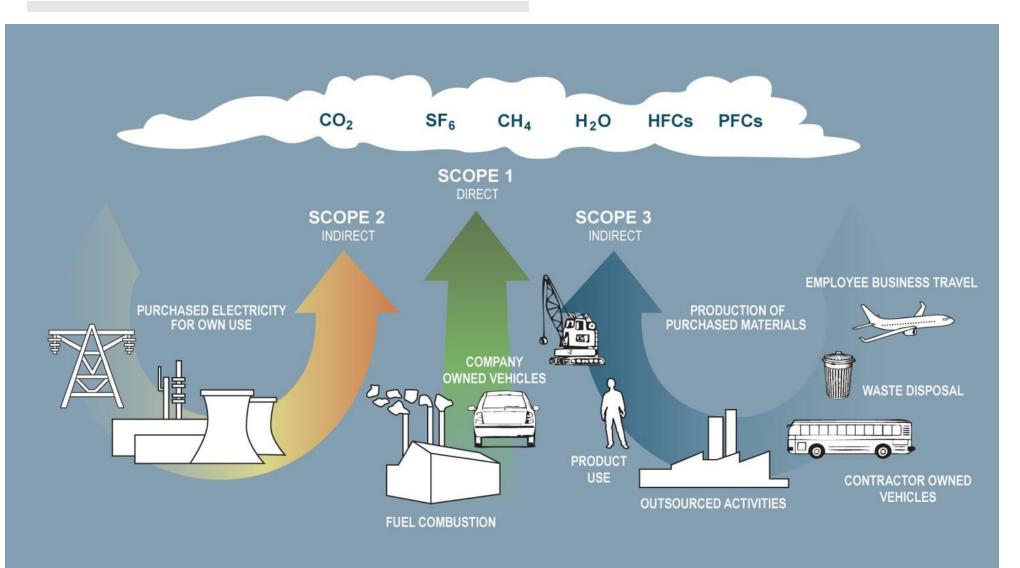
DEFINITIONS

SETTING THE BASE CASE

DESIGN CASE SCENARIOS

KEY FACTORS FOR SUCCESS

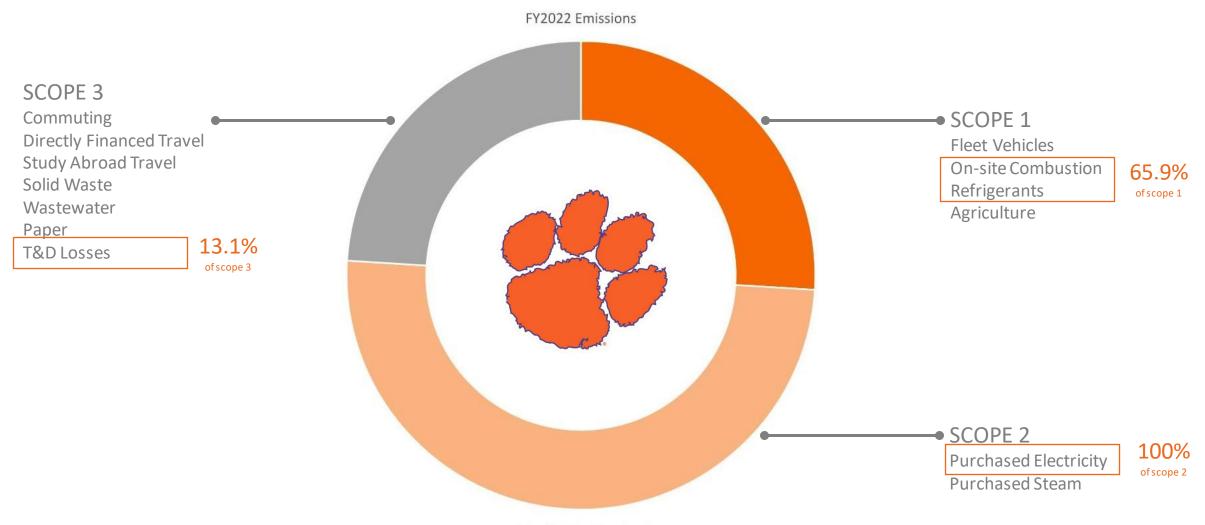
WHAT NOW?



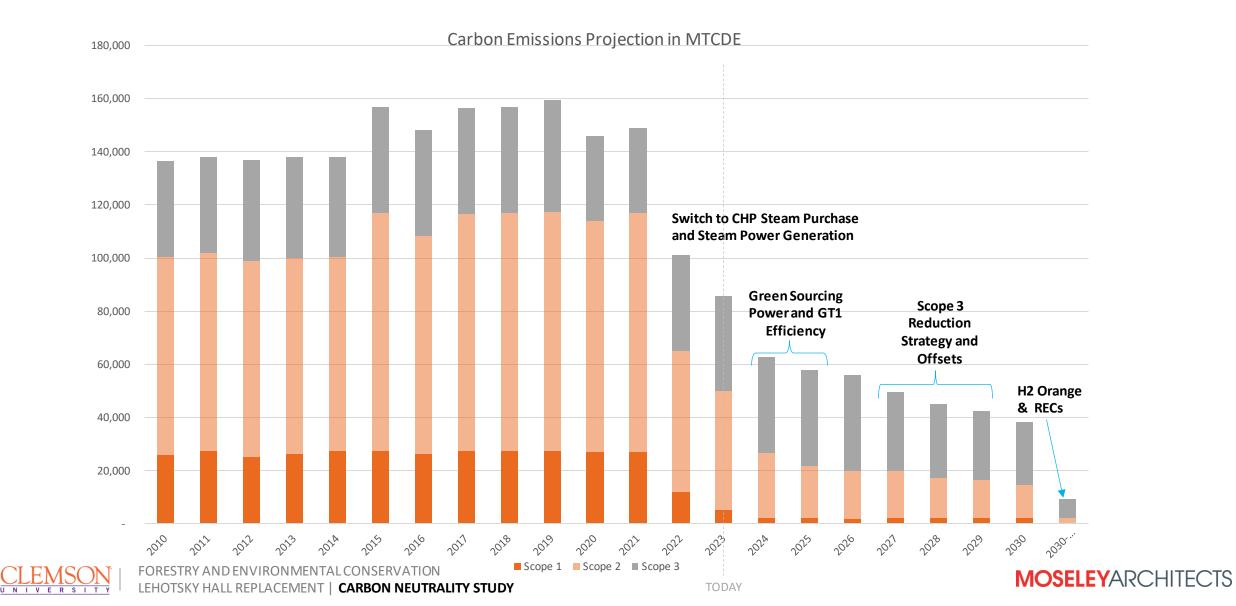
2020-2030 ENERGY STATEMENT

Clemson is committed to both cost efficiency and environmental sustainability. The University has set a **goal of being 100% carbon neutral by 2030** and is actively exploring and implementing solutions to achieve that goal.

A critical component of our rigorous planning around these initiatives is balancing these goals with cost effectiveness and efficiency. A phased approach over time will enable the University to incorporate the bestavailable technologies as they mature, avoid costly issues and disruptions associated with early adoption of new technologies, and achieve cost savings. This will also allow for a diversified generation portfolio that ensures reliability and resiliency needed to safely operate a world-class research university.



FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY



Scope 1 Scope 2 Scope 3

FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

2019-2030 ENERGY PLANNING

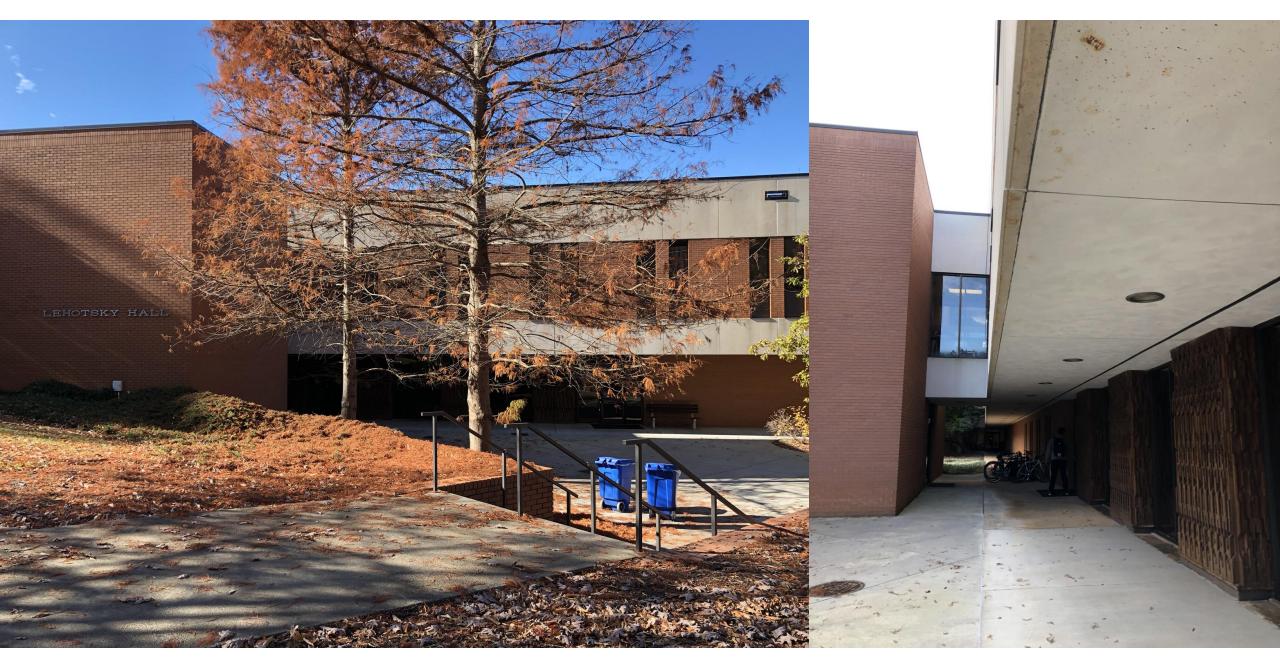
High Energy Efficiency Improvements 20-30%

- Chiller Plant Optimization
- Combined Heat and Power Plant
- Green Tiger 1 Energy Performance Contracting

On Campus Renewable Energy

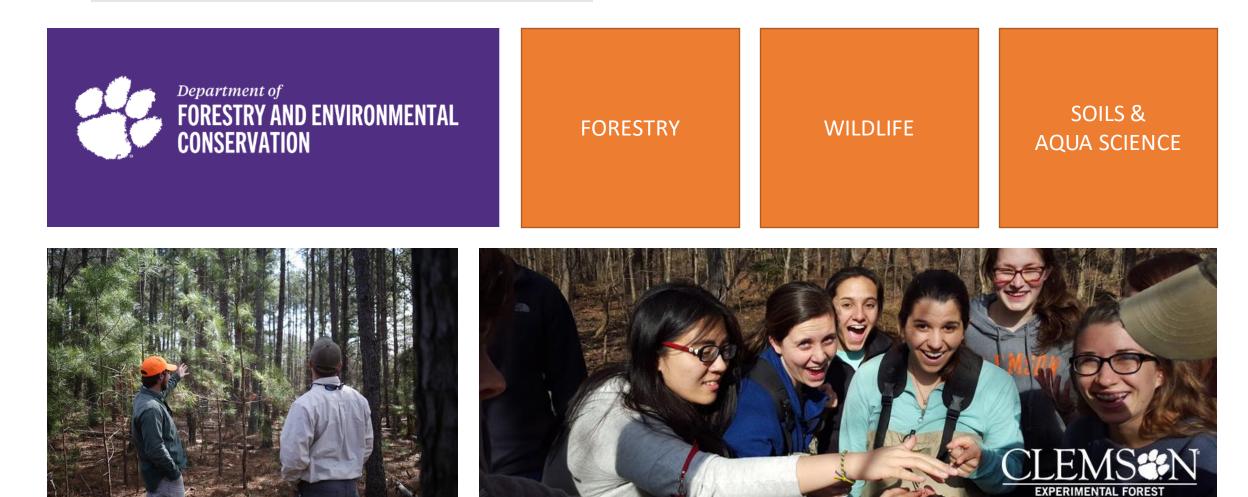
- Solar PV Multiple parking canopies and roof top installations 7-9 MW
- Energy Storage 20 30 MWh
- Net-Zero Plan on New Building Construction After 2025

Direct Sourcing and RECs


- SC Renewable Energy through public utility programs such as DE GSA
- SC based renewable RECs Solar renewable pipeline biogas supply

Innovation and Research – Decarbonization

- Carbon Capture
- H2 Orange
- Transition of Tiger Transit to Electric and or Hydrogen Busses



FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

		BUDGET OPTION	S FOR LEHOTSKY HALL				
DIAGRAMS				2 The			
	OPTION 1 PARTIAL RENOVATION	OPTION 2 FULL RENOVATION	OPTION 3 PARTIAL RENOVATION/ PARTIAL REBUILD	OPTION 4 FULL TEAR DOWN/ REBUILD ON SAME SITE			
DESCRIPTION	This renovation would focus on the envelope/ building systems and code upgrades only. No space would be reconfigured . Any space changes would be limited to space assignment, not renovation.	This is a complete building renovation including the envelope, building systems , code upgrades and space reconfiguration to meet the current and future space needs of FEC	This is a renovation of the south portion of the building and omplete demolition and rebuild of the north portion (with basement).	This is a complete tear down and rebuild on the same site.	This would be a complete new structure on a new site. Site with campus planning.		
RENOVATION COST ABATEMENT COST	\$ 17,680,628	\$ 26,155,445	\$ 8,250,000		\$		
ABATEMENT COST DEMOLITION COST	\$ 450,000 \$ 869,372	\$ 600,000 \$ 1,400,000	\$ 600,000 \$ 1,760,000	\$ 600,000 \$ 2,000,000			
NEW CONSTRUCTION COST	\$ -	\$ -	\$ 19,030,000	\$ 27,625,000	\$ 27,62		
SUBTOTAL - CONSTRUCTION COST	\$ 19,000,000	\$ 28,155,445	\$ 29,640,000	\$ 30,225,000	\$ 27,62		
A/E FEES	\$ 1.805.000	\$ 2.674.767	\$ 2.815.800	\$ 2,871,375	\$ 2,21		
CU PM FEES	\$ 750,000	\$ 1,111,295	\$ 1,169,891	\$ 1,192,981	\$ 1,09		
PLANNING FUND	\$ 150,000	\$ 222,146	\$ 233,860	\$ 238, 75			
ART FUND INSPECTIONS & TESTING	\$ 100,000 \$ 165,000	\$ 148,182 \$ 195,000	\$ 155,995 \$ 210,000	\$ 159,074 \$ 250,000			
GREEN GLOBES FEES	\$ 100,000	\$ 148,182	\$ 210,000	\$ 250 00			
CM PRECONSTRUCTION FEES	\$ 158,450	\$ 158,450	\$ 237,120	\$ 241,800	\$ 22		
SUBTOTAL - SERVICES FEES	\$ 3,228,450	\$ 4,658,023	\$ 4,978,661	\$ 5,112,79			
MOVE TO/FROM LEHOTSKY	\$ 250.000	\$ 250.000	\$ 250,000	\$ 250,000	20 C		
TEMPORARY LAB SPACES	\$ 740,000	\$ 1,300,000	\$ 1,300,000	\$ 1,300,00			
CLASSRM SWING SPACES [RENO / MODUL/	R] \$ 1,500,000	\$ 2,200,000	\$ 2,200,000	\$ 2,200,00	\$		
SHORT-TERM REPAIRS AT LEHOTSKY SUBTOTAL - RELOCATION & LOGISTICS	\$ 2,490,000	\$ 3,750,000	\$	\$ 3,750,00	\$ 50		
SUBTOTAL - RELOCATION & LOGISTICS	\$ 2,490,000	\$ 3,750,000	3,750,000	\$ 3,750,00	5 60		
FF&E	\$ 1,172,000	\$ 1,998,481	\$ 2,000,000	\$ 2,000,000	\$ 2,00		
UTILITIES NETWORK & LT.	\$ 453,184 \$ 328,183	\$ 750,000 \$ 500.000	\$ 750,000	\$ 750,00 \$ 750,00			
AUDIO-VISUAL	\$ 328,183	\$ 500,000	\$ 600,000	\$ 750,000	\$ 75		
SUBTOTAL - FF&E & UTILITIES	\$ 2,281,550	\$ 3,748,481	\$ 3,950,000	\$ 4,250,00			
CONSTRUCTION COST ESCALATION	Incl. in "Construction Cost" Above	Incl. in "Construction Cost" Above	\$ 1,810,881	\$ 1,218,875	\$ 1,11		
OWNERS CONTINGENCY	\$ 3,000,000	\$ 4,388,051	\$ 4,870,458	\$ 4,543,346	\$ 3,63		
TOTAL PROJECT COST	\$ 30,000,000	\$ 44,700,000	\$ 49,000,000	\$ 49,100	\$ 43.00		
SCHEDULE	Open for Spring 2023 Classes	Open for Spring 2023 Classes	Portion Open for Spring 2023 Classes*	Open for Fall 2023 Classes*	S 43,00 Open for Fall 2023 Classes*		
TOTAL GSF	95,591	95,591	85,000	85,00	8		
TOTAL PROJECT COST / GSF CONSTRUCTION COST / GSF	\$ 314 \$ 199	\$ 468 \$ 295	\$ 576 \$ 349	\$ 78 \$ 356			
% OWNER'S CONTINGENCY	5 199	5 295		\$ 336 99			
	PROS	PROS	PROS	PROS	PROS		
	Meets original budget	Meets FEC program needs w/ growth Addresses all environmental, structural, and programmatic issues	Meets FEC program needs w/ growth Potential for phased occupancy within current approved funding	Meets FEC program needs w/ growth	Meets FEC program needs w/ growth Minimizes move cost, FEC to remain in Lehotsky until constru		
	Meets original schedule duration and opening date	within the building.	(will require OSE approval)	Full benefits of long-term value provided by new building	complete (assuming temp measures to improve indoor air-qu		
					Promotes new image for CAFLS & ehances recruiting opportu		
					Full benefits of long-term value provided by new building		
	CONS Does not meet programmatic needs of FEC	CONS Exceeds current funding authorization	CONS Exceeds current funding authorization	Exceeds current funding authorization	CONS Exceeds current funding authorization		
	Will not address circulation and wayfinding issues.	Extends schedule for design & construction	Most complex option for all phases	Extends schedule for design & construction	New site to be determined		
	Will require future hazardous material abatement	Disconnected basement areas still exist	Extends schedule for design & construction	Requires (2) moves for building user groups	Extends schedule for design & construction		
	No significant difference in appearance COMMENTS	No new building entry experience included COMMENTS	COMMENTS	COMMENTS	COMMENTS		
	"Temporary lab spaces" = 5,000 SF of modular lab space at TBD location on campus	"Temporary lab spaces" = 7,200 SF of modular lab space at TBD location on campus	*Renovated portion could be open for Spring 2023 classes if the roject is phased while awaiting additional funding. (Phased Opening will require OSE approval)	*Fall 2023 opening dependent upon timing of additional funding approval.	*Fall 2023 opening dependent upon site selection and timin additional funding approval.		
			"T mporary lab spaces" = 7,200 SF of modular lab space at TBD location on campus	"Temporary lab spaces" = 7,200 SF of modular lab space at TBD location on campus	"Short-Term Repairs at Lehotsky" includes necessary HVAC environmental repairs to keep Lehotsky functioning safely users are vacated from the building.		
			30,000 SF renovation + 55,000 SF new construction	Use of some existing spreadfootings on site seems viable option based on initial studies.	Future abatement and demolition of Lehotsky will need to accounted for beyond this cost option. Estimated value of w needed, escalated to mid-2024: \$4M		

FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

DESIGN TEAM

ARCHITECTURE ENGINGEERING SUSTAINABILITY	Moseley Architects
CIVIL	Land Planning Associates
LANDSCAPE ARCHITECTURE	Core Studio Design
CM@R	Ajax Building Company
Cx	PC Energy Solutions + The BEE Group

FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

GREEN & MEMORABLE

- Respects campus traditions
- Creates special spaces

ENGAGED & INNOVATIVE

- Promotes collaboration
- Provides learning environments

WARM & WELCOMING

• Creates a strong sense of community

CONNECTED

- Promotes pedestrian connectivity
- Provides variety of transportation

SUSTAINABLE

 Promotes environmental objectives

MOSELEYARCHITECTS

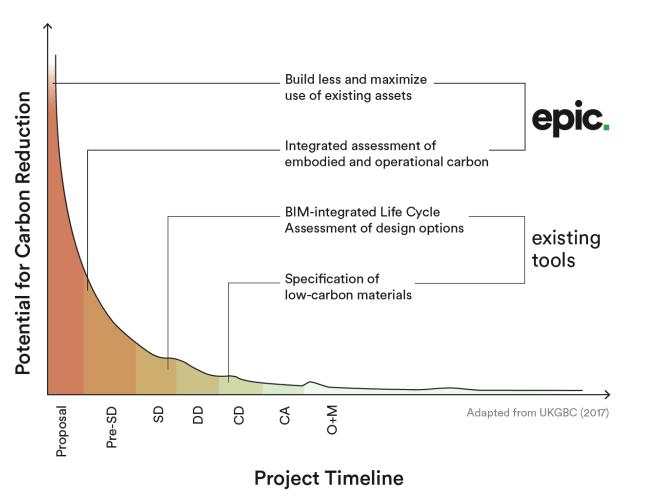
FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

GUIDING PRINCIPLES

- Demonstrate the intersection of design excellence and sustainable performance
- Make the most of, and integrate with, the surrounding community and give back
- Connect with and contribute to the surrounding ecosystem
- Use water wisely and handle rainfall responsibly
- Demonstrate that higher performance can be cost effective

Generate energy on-site from renewable sources and be transparent about the project's net carbon impact

- Promote the comfort and health of those who spend time in it
- Make decisions about materials based on an understanding of their impact (especially carbon impact)
- Anticipate adapting to new uses, climate change, and resilient recovery from disasters
- Catalog lessons for better design that have been learned through this project's design, construction, and occupancy



FORESTRY AND ENVIRONMENTAL CONSERVATION (FEC)

CARBON NEUTRALITY STUDY – kickoff SEPTEMBER 23, 2022

ABOUT EPIC

https://epic-documentation.gitbook.io/epic/

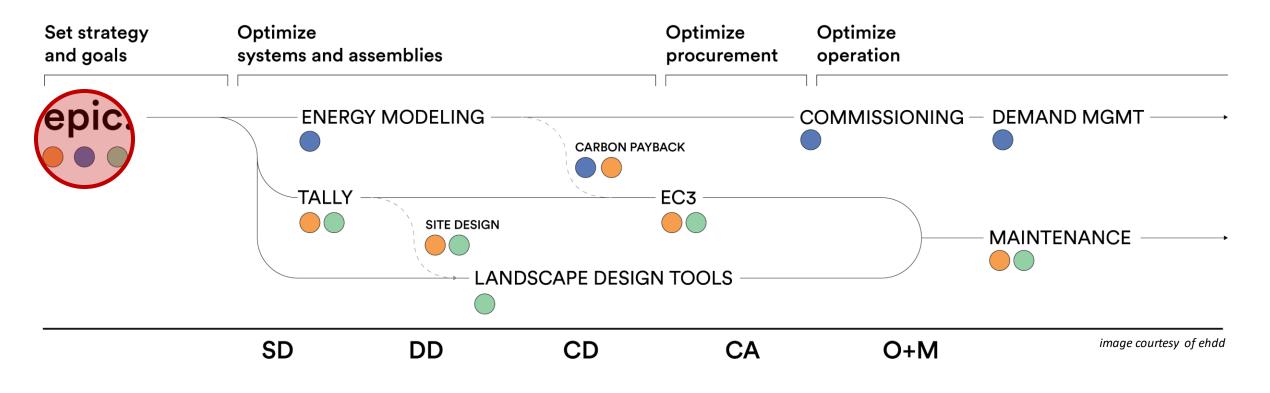
The Early Phase Integrated Carbon (EPIC) assessment is a tool built by EHDD to support climate-positive design decisions in early project phases when data is scarce but the potential for carbon reduction is high.

EPIC combines the following to assess the relative impact of carbon reduction measures on both embodied and operational carbon footprints:

- Regionally specific background data
- Forward looking projections
- Peer reviewed findings
- Common sense assumptions

EPIC IS NOT A HIGH-RESOLUTION DESIGN TOOL

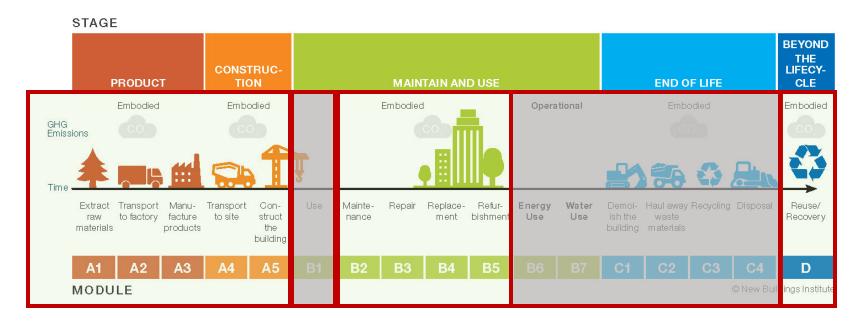
EPIC IS NOT A WHOLE BUILDING LIFE CYCLE ASSESSMENT TOOL


$\underbrace{\text{CLEMSON}}_{U \ N \ I \ V \ E \ R \ S \ I \ T \ Y} | F_{L}$

Embodied Carbon Strategy

Operational Carbon Strategy

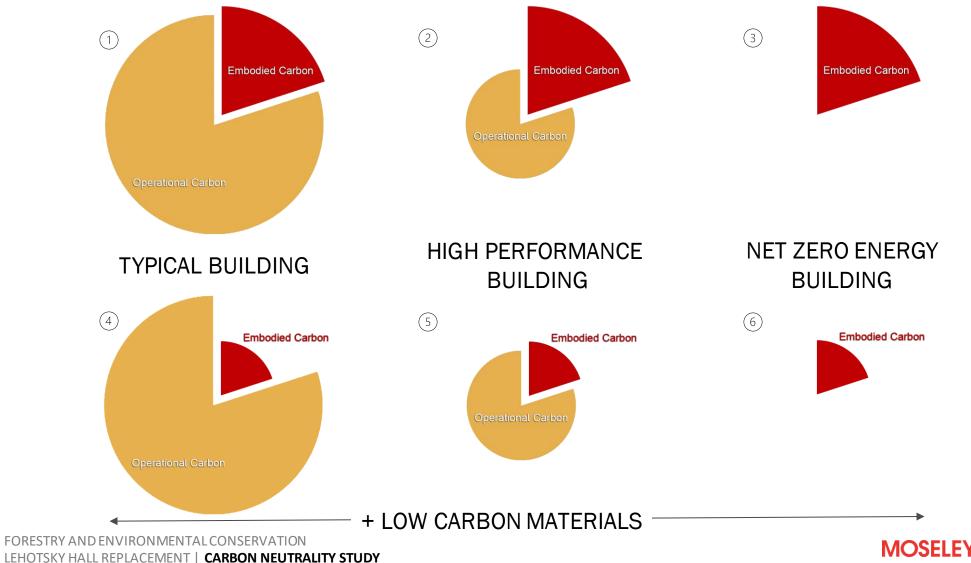
Carbon Sequestration Strategy


MOSELEYARCHITECTS

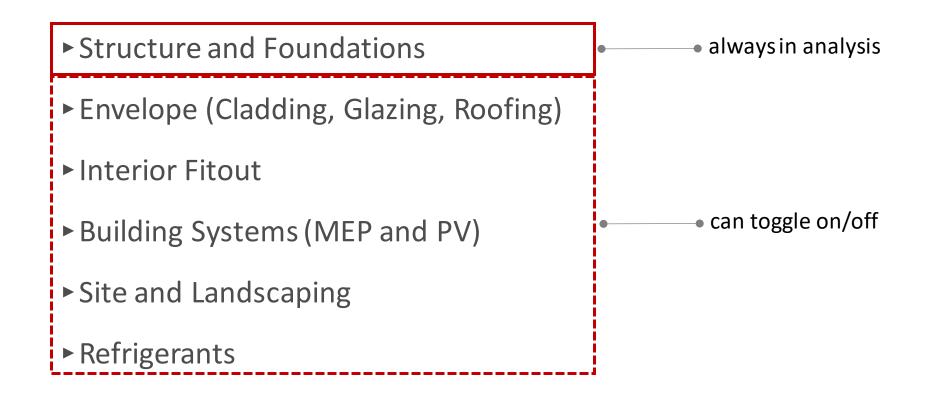
FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

DEFINITIONS

FIGURE 1: LIFECYCLE STAGES Data source: BS EN 15978:2011


Embodied Carbon: the greenhouse gas (GHG) emissions associated with the manufacturing, transportation, installation, maintenance, and disposal of construction materials

Calculated as global warming potential (GWP) and expressed in carbon dioxide equivalent units (CO2e).


FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

DEFINITIONS

LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY UNIVERSITY

LCA COMPONENTS INCLUDED

DEFINITIONS

CONCRETE

- Conservative: typical concrete mix, no effort made to lower CO2 emissions
- Best Practices: concrete with 30-50% replacement of cement by supplementary cementitious materials (SCM) and careful sizing of concrete structural elements
- Low Carbon: concrete with >50% replacement of cement by SCM, lower carbon aggregate, and careful sizing of concrete structural elements

STEEL

- Conservative: typical steel with a typical recycled content, from a mix of blast and electric arc furnaces
- Best Practices: steel from electric arc furnaces or blast furnaces with gas recovery, with high recycled content, and structural design to minimize overspecification
- Low Carbon: steel from electric arc furnaces powered with renewable energy sources, potentially with biomass reductants, with high recycled content, and structural design to minimize overspecification and maximize reusability

TIMBER

- In accordance with ISO 21930, the carbon content of biogenic materials can only be counted as sequestered if the timber comes from a forest managed with sustainable practices.
- An example of this is timber from an FSC or SFI certified forest.
- Important to obtain transparency documentation for actual wood procured
- More information is available in the EPIC appendix under Biogenic Carbon.

ENVELOPE

- Conservative: Standard materials and assemblies, no effort made to lower carbon emissions
- Best Practices: Reduce redundancies and select lowcarbon materials with high levels of recycled content
- Low Carbon: Maximize biogenic materials, innovate efficient assemblies, and reduce material use

INTERIORS

- Conservative: Standard fittings, furniture, and fixtures, no effort made to lower carbon emissions
- Best Practices: Address "hot spots" (flooring, acoustic panels, casework, etc)
- Low Carbon: Comprehensive low carbon design and specification of fit out

FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

DEFINITIONS

PV ORIENTATION

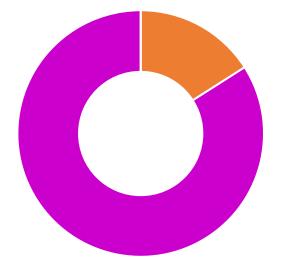
- Optimal: There is no impediment on the site to maximum solar exposure.
- Suboptimal: There is solar potential on the site, but it is partly compromised. A 20% penalty on solar energy production is assessed.

CLEAN POWER PURCHASE

- None: no purchase of clean power or RECs.
- Low: Purchase of clean power to cover 50% of building energy use.
- High: Purchase of clean power to cover 100% of building energy use.
- 24/7 clean electrification: Time matched purchase of zero-carbon power to ensure that building emissions are totally offset (coming soon).

LANDSCAPE

- Low Sequestration: An example is no-mow turfgrass.
- Moderate Sequestration: An example is low shrubs and small trees in a matrix of nomow turfgrass.
- High Sequestration: an example is dense broadleaf shrubs and trees in a matrix of no-mow turfgrass.
- Note: the assumption for all planted areas reported in the base case is low sequestration.
- Note: do not report lawn areas or hardscape



BASE CASE EMISSIONS

Key Assumptions:

- · 85,000 sf
- Project complete in 2024
- Steel Framed Laboratory/Classroom
- 3 floors above ground (25,000 sf each)
- 1 floor below ground (10,000 sf)
- 45% Laboratory/55% University usage
- 181 kBtu/sf/yr benchmark EUI (override from 232 default)
- Previously developed site
- · 235,224 sf site area
- No carbon sequestering plantings

30-Year Base Case Emissions

Embodied Carbon Operational Carbon Sequestered Carbon

Total Emissions	40,800 tCO2e
Embodied Carbon	6,500 tCO2e
Operational Carbon	34,200 tCO2e
Sequestered Carbon	0 tCO2e

SCENARIO MODIFICATIONS

MASSTIMBER

- Concrete and steel are set to best practices
- Envelope and interiors are set to best practices
- Responsibly sourced timber (RST) is toggled off
- EUI target is 105 kBtu/sf/yr
- Onsite solar PV is 50% of load (1,118 kW; 48,149 sf)
- Planting area: 62,810 low; 14,656 med; 27,218 high

RST MASS TIMBER

- Concrete and steel are set to best practices
- Envelope and interiors are set to best practices
- Responsibly sourced timber (RST) is toggled on
- ► EUI target is 105 kBtu/sf/yr
- Onsite solar PV is 50% of load (1,118 kW; 48,149 sf)
- Planting area: 62,810 low; 14,656 med; 27,218 high

100% PV

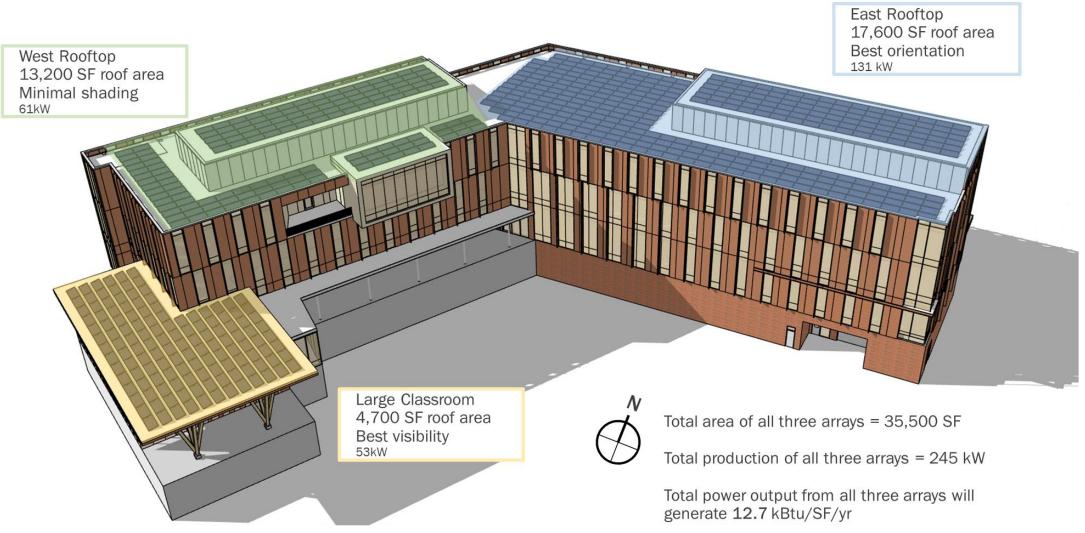
- Concrete and steel are set to best practices
- Envelope and interiors are set to best practices
- Responsibly sourced timber (RST) is toggled off
- ► EUI target is 105 kBtu/sf/yr
- Onsite solar PV is 100% of load (2,237 kW; 96,297 sf)
- Planting area: 62,810 low; 14,656 med; 27,218 high

INTENSIVE LANDSCAPE

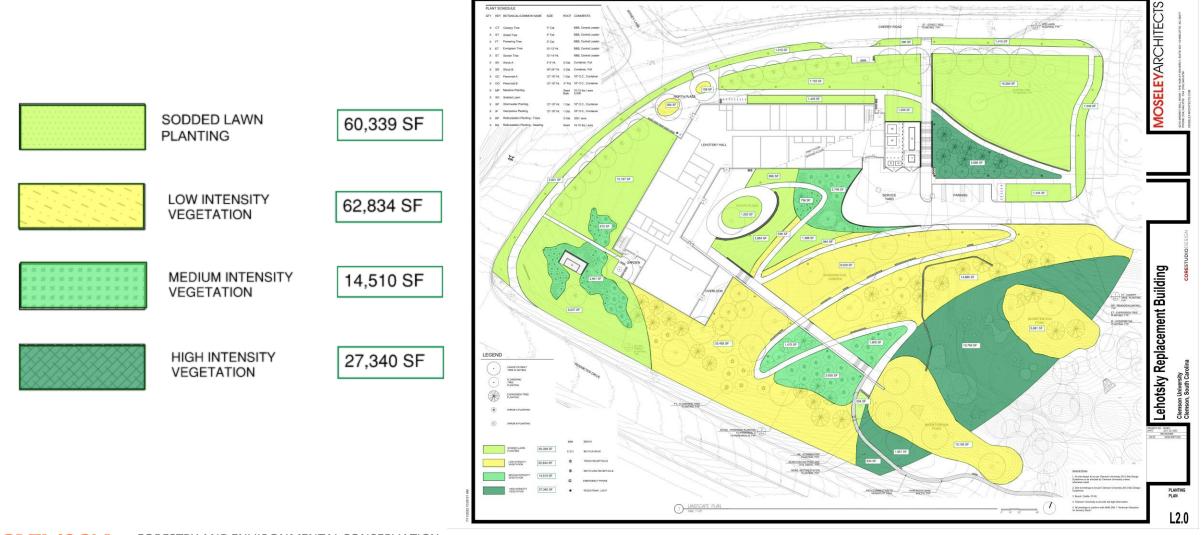
- Concrete and steel are set to best practices
- Envelope and interiors are set to best practices
- Responsibly sourced timber (RST) is toggled off
- ► EUI target is 105 kBtu/sf/yr
- Onsite solar PV is 50% of load (1,118 kW; 48,149 sf)
- Planting area: 10,468 low;
 47,108 med; 47,108 high

DESIGN CASE EMISSIONS

Comparison of Design Scenarios tCO2e @ year 30


Key Assumptions:

- Best practices:
 - concrete
 - steel
 - envelope
 - interiors
- Mass timber (unless noted)
- EUI target 105
- 50% PV offset (unless noted)
- · Solar orientation optimal
- No clean power purchase
- Landscape (unless noted):
 - 62,810 sf low
 - 14,656 sf med
 - 27,218 sf high


RENEWABLE ENERGY

FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

LANDSCAPE

MOSELEYARCHITECTS

FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

UNIVERSITY

KEY FACTORS

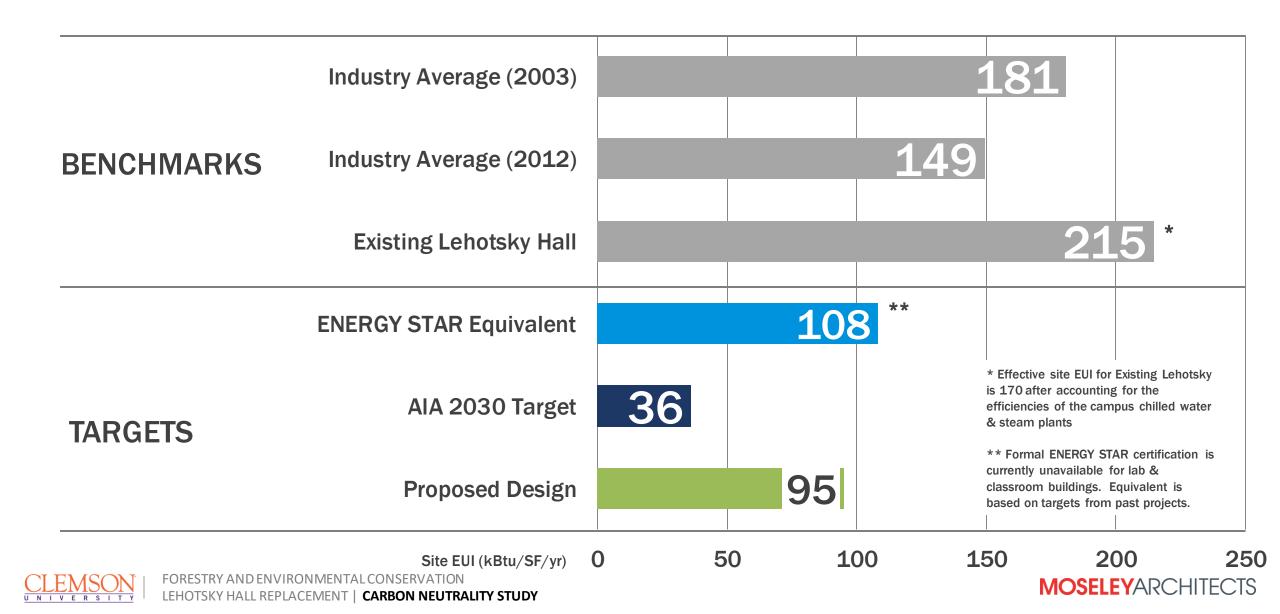
EMBODIED CARBON

- Responsibly Sourced Timber

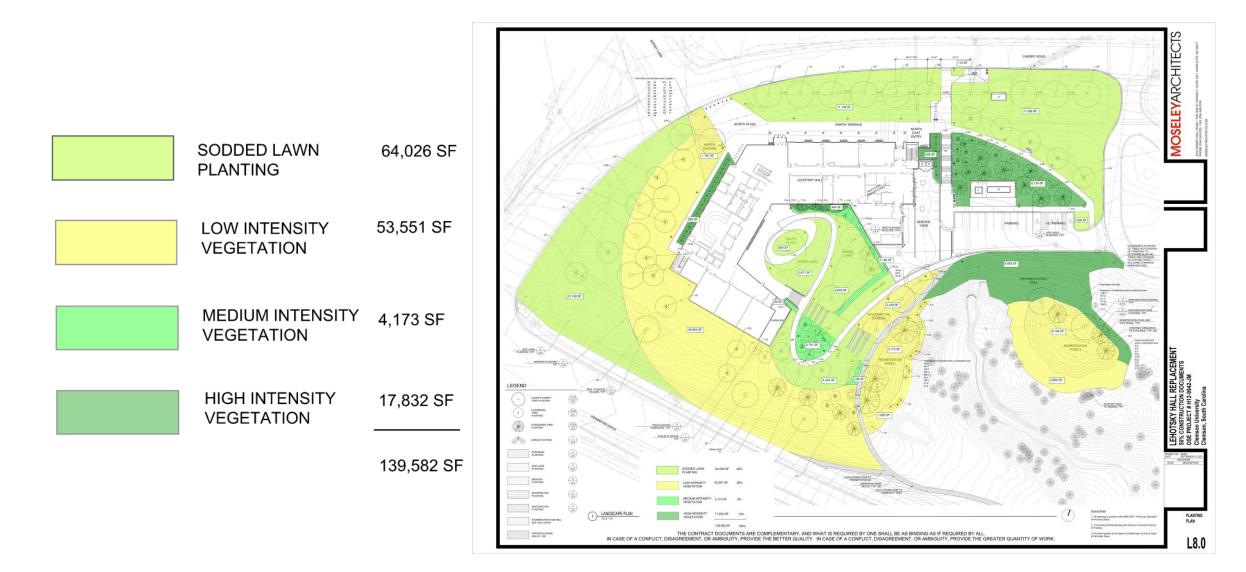
OPERATIONAL CARBON

- EUI Target
- Onsite Solar PV Array(s)

SEQUESTERED CARBON

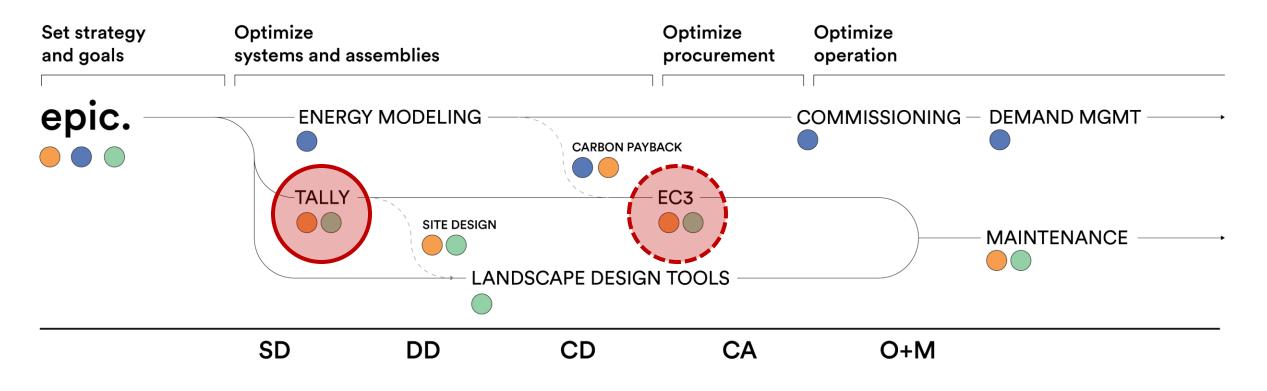

- Moderate Sequestration Planted Area
- High Sequestration Planted Area

NEXT STEPS


- Identify, layer, and refine preferred strategies to meet goals
- Update calculations with more sophisticated tools

WHAT NOW? (operational carbon)

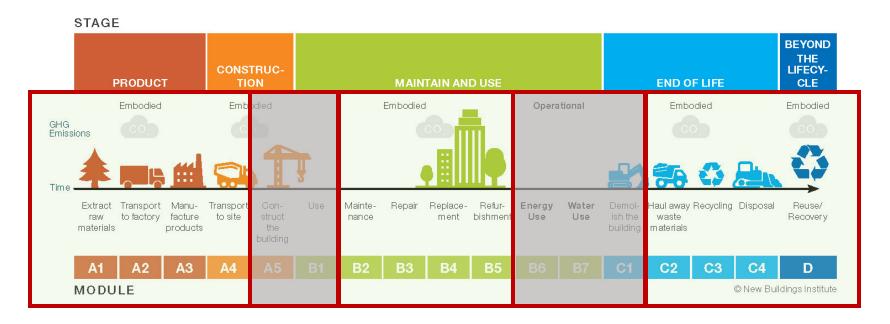
WHAT NOW? (sequestration)


FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

Embodied Carbon Strategy

Operational Carbon Strategy

Carbon Sequestration Strategy



FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

LCA PHASES INCLUDED (TALLY)

FIGURE 1: LIFECYCLE STAGES Data source: BS EN 15978:2011

Embodied Carbon: the greenhouse gas (GHG) emissions associated with the manufacturing, transportation, installation, maintenance, and disposal of construction materials

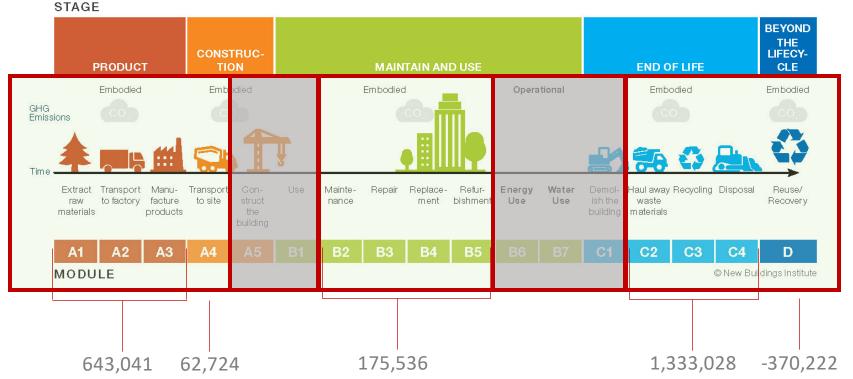
Calculated as global warming potential (GWP) and expressed in carbon dioxide equivalent units (CO2e).

FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

LCA COMPONENTS INCLUDED

EPIC

- Structure and Foundations
- Envelope (Cladding, Glazing, Roofing)
- Interior Fitout
- ► Building Systems (MEP and PV)
- ► Site and Landscaping
- ► Refrigerants


Tally

- ► Substructure
- ► Superstructure
- ► Enclosure
- ► Interiors

DESIGN CASE EMISSIONS (TALLY PRELIMINARY)

FIGURE 1: LIFECYCLE STAGES Data source: BS EN 15978:2011

TOTAL: 1,844,150 kgCO2e

FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

LARGEST CONTRIBUTORS

>100,000 kgCO2e

Substructure

 Cast-in-place concrete (custom mix)

Superstructure

- Cast-in-place concrete (custom mix)
- Steel, W section (wide flange shape)

Envelope

- Brick
- Cast-in-place concrete (structural concrete, 4000 psi)
- Curtainwall system (including glazing)

Interiors

► Wall board, gypsum

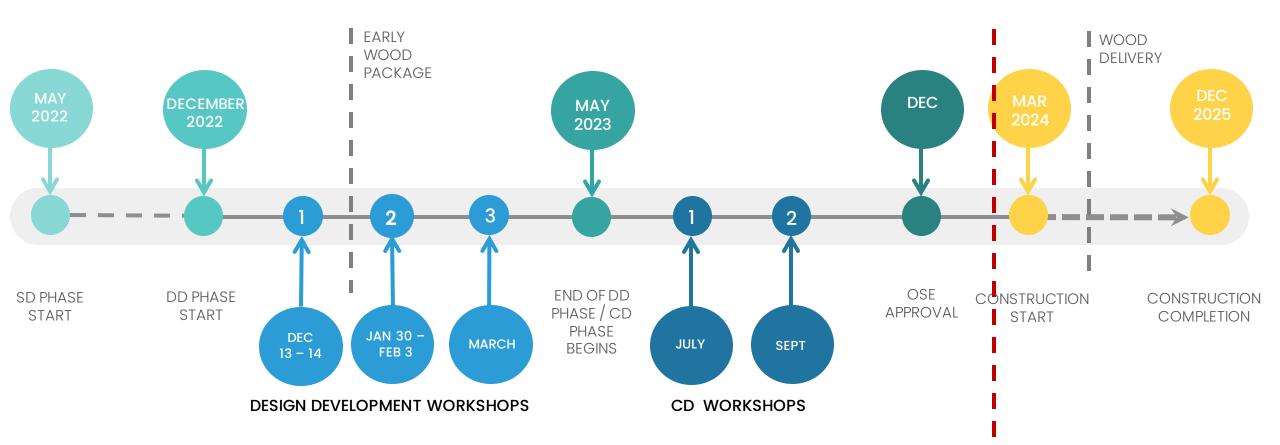
EMBODIED CARBON BENCHMARKS

Material	Tally kgCo2e [total]	EC3 spec range [kgCO2e/unit] Other notes
Cast-in-place concrete, custom mix	682,956.53	183.80-315.40/yd3CLF baseline: 309 kgCO2e/m3
Curtainwall System (including glazing)	260,296.98	
Cast-in-place concrete, structural concrete, 4000 psi	195,252.50	183.80-315.40/yd3CLF baseline: 309 kgCO2e/m3
Wall board, gypsum	180,397.01	0.1093-0.4500/ft2
Steel, W section (wide flange shape)	112,719.59	CLF baseline: 1,220 kgCO2e/MT
Brick	111,954.93	
Steel, C-stud metal framing	58,148.28	
Aluminum faced composite wall panel (ACM)	48,881.49	
Polyisocyanurate (PIR), board	43,296.33	0.1708-0.2668/ft2
Mineral wool, board, generic	41,822.64	0.2881-0.5951/ft2
Aluminum mullion system	35,120.91	
Extruded polystyrene (XPS), board	33,877.15	0.9112 – 1.452/ft2
TPO roofing membrane	27,479.32	
Steel, HSS section	25,802.12	CLF baseline: 1,990 kgCO2e/MT

FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

SPECIFICATIONS

		Table 8b. Sun	nmary Results (A1	-A3): 3001-40	000 psi (20.7-27.6	MPa) RMC pi	roduct mix d	esign, per cubic	yard			0-19% Fly A	Ash and/or Slag	4000-00-FA/SL
										_			% Fly Ash	4000-20-FA
En vine une entre l	and a				001- 3001- 000-00- 4000-20-		8001- 300 1000-40- 409	1- <u>3001-</u> 0-30- 4000-40-	3001- 3001 4000-50- 4000	3001-	4000 psi	30-39	% Fly Ash	4000-30-FA
Environmental		_	Minimum	10.50 million (202	A/SL FA	FA FA	A SL	SL	SL FA/SI	(20.6	9-27.58	40-49	% Fly Ash	4000-40-FA
Product		Core Mandatory		202.20			205.47				1Pa)	30-3	39% Slag	4000-30-SL
D eclaration	NRMCA	GWP kg C ODP kg C	02e 182.50 FC11e 5.32E-06		293.28 251.66 7.35E-06 6.39E-06	229.14 5.87E-06		27.48 205.64 60E-06 7.68E-06	183.74 18 7.76E-06 6.65	2.50		40-4	19% Slag	4000-40-SL
	NATIONAL READY MIXED CONCRETE ASSOCIATION	AP kg S	D2e 0.68	0.90	0.88 0.79	0.74	0.68	0.89 0.89	0.90	0.80		≥ 50	0% Slag	4000-50-SL
		EP kg N SFP kg C		0.36	0.36 0.31 18.93 17.11	0.28	0.26	0.30 0.28 19.15 19.22		7.35		≥ 20% Fly Asł	h and ≥ 30% Slag	4000-50-FA/SL
NRMCA MEMBER INDUSTRY-A	AVERAGE EPD FOR	ADPf MJ,	the definition of the second	509.67	509.67 43.28		and all states in the second s	19.15 19.22 189.53 484.71		1.29				
READY MIXE					Baala	line		T			-			-
				Baseline			Target		Baseline		arget			
			Total Volume		Carl	Carbon		Carbon		Building Budget		ng Budget	%	
Building Material			[yd:	3]	[kgCO2	e/yd3]	[kgC	O2e/yd3] [k	gCO2e]	[kg	cO2e]	Reduction	
Cast in Place	Concrete		2,	073.45		293.28		205.6	64 6	08,101.14	4	26,384.06	30%	-
¹ Baseline Carbon for 3001-4000 psi 0-19% Fly Ash and or Slag (4000-00-FA/SL)										-				
² Target Carbon for 3001-4000 psi 40-49 Fly Ash (4000-40-FA)								-						
³ Scope Boundary Life Cycle Stages A1-A3														-
	Product Declaration www.nstorg	CRU kg MR kg MER kg EE MJ,	0.00 0.00 0.00 NCV 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00	0.00 0.00 0.00	I		ı I	


CONCRETE MIXTURES

Supply concrete mixtures such that the Global Warming Potential (GWP) of all concrete on the project is less than or equal to 426,384 kgCO2e.

SCHEDULE OVERVIEW

FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

CLEMSON | FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

CLEMSON | FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

FORESTRY AND ENVIRONMENTAL CONSERVATION LEHOTSKY HALL REPLACEMENT | CARBON NEUTRALITY STUDY

LESSONS LEARNED

THIS IS INTERESTING

- Presented this information 4x to stakeholder groups
- Every audience was very engaged and looking for ways they could contribute to success

INCLUDE VISUALS

- The schematic building model, with renewables shown alongside their production capacity was valuable in comparing to EPIC scenarios
- The schematic landscape plan, with planting intensities, was valuable in discussing sequestration potential with other landsc ape goals

EMPHASIZE EMBODIED CARBON IN YEAR 1 (WHILE SHARING YEAR 30, TOO)

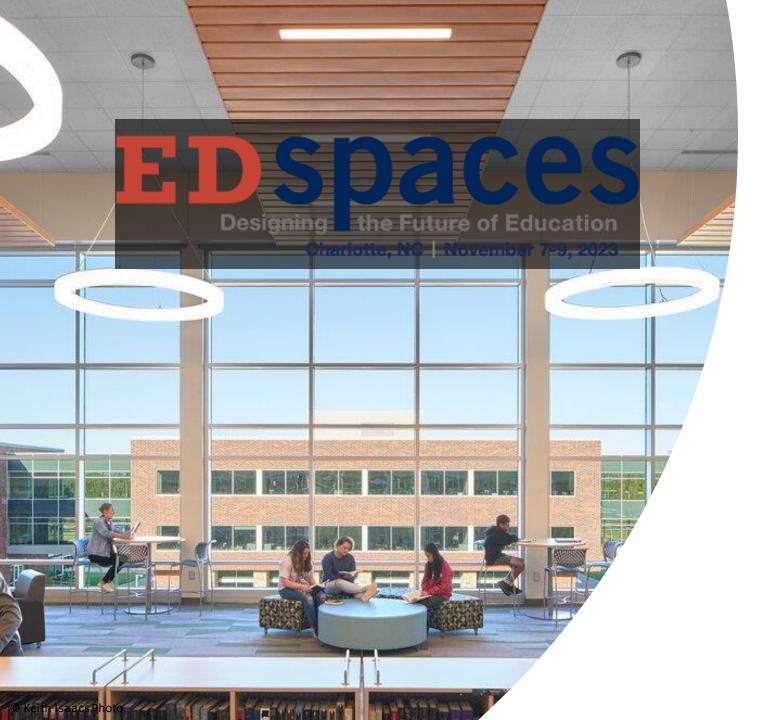
- Only sharing data from year 30 does not create the urgency to keep carbon out of the atmosphere today
- Only sharing data from year 1 would not create the urgency needed to prioritize sequestration, operational efficiencies, or r enewables

DON'T BE SHY

- Build any number of scenarios you might be surprised what you learn
- A full presentation isn't necessary for this tool to be a useful conversation starter
- Keep following up with model and with teammates until you have a satisfactory design

WHAT NOW?

EPIC had a new release in May 2023:


- Expanded documentation annex (new data sources, increased data transparency)
- Direct integration with Zero Tool to set baseline EUI estimates
- Direct integration of NREL's PV Watts for solar PV energy generation estimates
- Improvement, expansion, and peer review of structural bill of materials modeling
- New features allowing users to further refine the scope of EPIC (including or excluding parts of model)
- Ability to enter custom carbon intensity data (assists with setting carbon budgets and tracking projects into later design phases)
- Streamlined user interface

Two things did not change:

- EPIC remains open access (it's free)
- EPIC will continue to maintain data privacy

#edspaces

Thank You!

Please scan the QR code to provide session feedback.

